Abstract

Prestack reverse time migration (RTM) requires extensive data storage since it computes wavefields in forward time and accesses wavefields in reverse order. We first review several successful schemes that have been proposed to reduce data storage, but require more computational redundancies. We propose two effective strategies to reduce data storage during RTM. The first strategy is based on the Nyquist sampling theorem, which involves no extra computational cost. The fact is that the time sampling intervals required by numerical algorithms or given by field records is generally several times smaller than that satisfied by the Nyquist sampling theorem. Therefore, we can correlate the source wavefields with the receiver wavefields at the Nyquist time step, which helps decrease storage of time history. The second strategy is based on a lossless compression algorithm, which is widely used in computer science and information theory. The compression approach reduces storage significantly at a little computational cost. Numerical examples show that the two proposed strategies are effective and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.