Abstract

Increasing consumption of plant lectins (e.g., eating fruits and vegetables) may reduce COVID-19 risks. Mannose binding lectins (MBL), a key molecule in our innate immune response, contributes to host defense against coronaviruses such as SARS-CoV. This article reviews the role of MBL in the innate immune response against coronavirus infections, highlights evidence of MBL’s significance, and suggests dietary MBL supplementation through increased consumption of fruits and vegetables as an accessible and viable approach to minimizing COVID-19 infection risk.

Highlights

  • The global COVID-19 pandemic continues to spread

  • While a lot of research is focused on a vaccine which trains the adaptive immune system to provide an acquired immunity, the innate immune system should not be overlooked in its ability to help reduce the risk of COVID-19 infection

  • This article reviews the role of mannose binding lectins (MBL) in the innate immune system, knowledge about the epidemiology of COVID-19, and how supplementing MBLs increases resilience against COVID-19 infection

Read more

Summary

Introduction

The global COVID-19 pandemic continues to spread. Public health measures in the USA have had limited efficacy with masks and social distancing the primary methods for reducing the infection rate. Evidence supporting the positive effects of MBL with respect to COVID-19 infections includes (a) their ability to bind to coronaviruses thereby inhibiting infectivity and activating the complement system, (b) observed infection rates varying by race and ethnicity consistent with variations in mannose binding lectin levels, and (c) consumption of more plant lectins correlated with better outcomes and lower rates of infection.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.