Abstract

In water resource recovery facilities, sidestream biological nitrogen removal via anaerobic ammonium oxidation (anammox) is more energy and cost efficient than conventional nitrification-denitrification. However, under mainstream conditions, nitrite oxidizing bacteria (NOB) out-select anammox bacteria for nitrite produced by ammonium oxidizing bacteria (AOB). Therefore, nitrite production is the bottleneck in mainstream anammox nitrogen removal. Nitrate-dependent denitrifying anaerobic methane oxidizing archaea (n-damo) oxidize methane and reduce nitrate to nitrite. The nitrite supply challenge in mainstream anammox implementation could be solved with a microbial community of AOB, NOB, n-damo, and anammox with methane from anaerobic sludge digestion or a mainstream anaerobic membrane bioreactor (AnMBR). The cost and environmental impact of traditional nitrification/dentrification relative to AOB/anammox and AOB/anammox/n-damo systems, with and without an AnMBR, were compared with a stoichiometric model. AnMBR implementation reduced costs and emission rates at moderate to high nutrient loading by lowering aeration and sludge handling demands while increasing methane available for cogeneration. AnMBR/AOB/anammox systems reduced cost and GHG emission by up to $0.303/d/m3 and 1.72 kg equiv. CO2/d/m3, respectively, while AnMBR/AOB/anammox/n-damo systems saw a similar reduction of at least $0.300/d/m3 and 1.65 kg equiv. CO2/d/m3 in addition to alleviating the necessity to stop nitrification at nitrate, allowing easier aeration control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.