Abstract

Additive manufad (AM) magn alloys corrode rapidly due to tensile stress and coarse microstructures. Cyclically combining (hybridizing) additive manufacturing with interlayer ultrasonic peening was proposed as a solution to improve corrosion resistance of additive manufactured magnesium WE43 alloy through strengthening mechanisms and compressive residual stress. Applying interlayer peening work hardened discrete layers and formed a glocal integrity of regional grain refinement and subsurface compressive residual stress barriers. Tensile residual stress that typically accelerates corrosion decreased 90%. Results showed time-resolved control over corrosion was attainable by interlayer peening, and local corrosion within print cells decreased 57% with respect to as-printed WE43.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call