Abstract

Physical limitations of quantum hardware often necessitate nearest-neighbor (NN) architecture. When synthesizing quantum circuits using the basic gate library, which consists of CNOT and single-qubit gates, CNOT gates are required to convert a quantum circuit into one suitable for an NN architecture. In the basic gate library, CNOT gates are considered the primary cost of quantum circuits due to their higher error rates and longer execution times compared to single-qubit gates. In this paper, we propose a new linear NN (LNN) circuit design for quantum Fourier transform (QFT), one of the most versatile subroutines in quantum algorithms. Our LNN QFT circuit has only about 40% of the number of CNOT gates compared to previously known LNN QFT circuits. Subsequently, we input both our QFT circuits and conventional QFT circuits into the Qiskit transpiler to construct QFTs on IBM quantum computers, which necessitate NN architectures. Consequently, our QFT circuits demonstrate a substantial advantage over conventional QFT circuits in terms of the number of CNOT gates. This outcome implies that the proposed LNN QFT circuit design could serve as a novel foundation for developing QFT circuits implemented in quantum hardware that demands NN architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.