Abstract

A meta-analysis was performed on eight trials, which included a total of 992 parity 1 to 8 lactating sows, to evaluate the effects of feeding xylanase which is the main enzyme activity present in the enzymatic complex (Rovabio Excel, Adisseo, France) supplement throughout lactation on the following sow performance factors: BW loss, feed intake, backfat depth, and piglet growth. Even a short period of enzyme supplementation during lactation led to a reduction in BW loss of approximately 3 kg per sow (P = 0.003). This reduction represented 1-2% of the BW of sows. This effect could be explained by an increase in feed energy intake and enhanced feed digestibility. Sows fed enzyme-supplemented diets exhibited greater DM, OM, and GE digestibilities (3.4, 3.9, and 4.2% increases, respectively; P < 0.001) than sows fed control diets. During lactation, sows lost from 19 to 25 kg of BW (i.e., approximately 10% of their BW), with a difference between parity groups (P < 0.001). Body reserve mobilization was decreased in sows fed enzyme-supplemented diets (-2.9 kg, P = 0.003), with a more pronounced effect in primiparous than multiparous sows when BW loss is expressed relative to total BW (-2.27 vs. -0.59%, respectively; P = 0.058). Enzyme supplementation also increased litter weight gain up to weaning, with a greater effect in litters from multiparous sows than those from primiparous sows (5.4 vs. 0.6 kg, respectively; P = 0.009). These results could be explained in part by the relationship between their NE intake and either variations in BW or litter weight gain (R2 = 0.51 and 0.49, respectively; P < 0.001). Finally, the meta-analysis suggests that there are differences in the partitioning of the NE intake between growth and milk production and in relation to the sow's parity or physiological status. Extra energy released by enzyme is used for one of these functions (i.e., body mobilization reduction or greater milk export for litter gain).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.