Abstract
Zero-inflated explanatory variables, as opposed to outcome variables, are common, for example, in environmental sciences. In this article, we address the problem of having excess of zero values in some continuous explanatory variables, which are subject to multi-outcome lasso-regularized variable selection. In short, the problem results from the failure of the lasso-type of shrinkage methods to recognize any difference between zero value occurring either in the regression coefficient or in the corresponding value of the explanatory variable. This kind of confounding will obviously increase the number of false positives – all non-zero regression coefficients do not necessarily represent true outcome effects. We present here the adaptive LAD-lasso for multiple outcomes, which extends the earlier work of multi-outcome LAD-lasso with adaptive penalization. In addition to well-known property of having less biased regression coefficients, we show that the adaptivity also improves method’s ability to recover from influences of excess of zero values measured in continuous covariates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.