Abstract

Objective: In livestock production, antimicrobial resistance (AMR) is considered an externality as it is the undesired result of preventive and curative antimicrobial use. To address this biosocial issue, our objective is to present an approach based on interdisciplinary research to develop strategies and policies that aim to contain AMR.Method: To do so, we addressed three fundamental questions on which control policies and strategies for agricultural pollution problems are centered in the light of AMR. To ensure the technical, economic, behavioral and political feasibility of the developed measures, we demonstrated the usefulness of systemic approaches to define who, what and how to target by considering the complexity in which the ultimate decision-maker is embedded. We then define how voluntary or compulsory behavioral change can be achieved via five routes, introducing a clear taxonomy for AMR Interventions. Finally, we present three criteria for ex-ante analysis and ex-post evaluation of policies and strategies.Conclusion: Interdisciplinary systemic approaches enable the development of AMR policies and strategies that are technically, politically, economically and, last but not least, behaviorally feasible by allowing the identification of (a) all actors influencing AMU in livestock production, (b) power relations between these actors, (c) adequate regulatory and intervention bases, (d) what behavioral change strategy to use, (e) whom should implement this, as well as the cost-effective assessment of combinations of interventions. Unfortunately, AMR policies and strategies are often investigated within different disciplines and not in a holistic and systemic way, which is why we advocate for more interdisciplinary work and discuss opportunities for further research.

Highlights

  • For the two past decades, concerns regarding antimicrobial use in farm animals grew considerably due to the growing prevalence of antimicrobial resistance (AMR) and the way this affects human health

  • The World Bank Group estimated that reductions in annual global GDP due to AMR may be comparable to the losses caused by the 2008–2009 financial crisis, with the difference that the economic damage would continue for decades and would mostly affect low-income countries [3]

  • To better visualize the interconnection between human decisions concerning antimicrobial use (AMU) and AMR in livestock production, we looked at it from a systems perspective and adapted “the fix that fails” system archetype to represent the relationship between AMR and AMU

Read more

Summary

Introduction

For the two past decades, concerns regarding antimicrobial use in farm animals grew considerably due to the growing prevalence of antimicrobial resistance (AMR) and the way this affects human health. While AMR is a natural phenomenon, its increasing prevalence is most certainly not It is fueled by anthropogenic factors such as the intensive clinical and agricultural use of antimicrobials worldwide, the growth of the world’s human population, changes in human lifestyle (e.g., increased urbanization, migration and travel), and misconceptions and malpractices regarding antimicrobial use (AMU) [1]. Over time, this increasing prevalence is predicted to have a significant impact on global health and wealth by potentially causing up to 10 million deaths each year, at a cumulative cost of $100 trillion to global economic output by 2050 [2]. The World Bank Group estimated that reductions in annual global GDP due to AMR (ranging between 1.1 and 3.8%) may be comparable to the losses caused by the 2008–2009 financial crisis, with the difference that the economic damage would continue for decades and would mostly affect low-income countries [3]

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call