Abstract

Spiking Neural Networks (SNNs) have received extensive academic attention due to the unique properties of low power consumption and high-speed computing on neuromorphic chips. Among various training methods of SNNs, ANN-SNN conversion has shown the equivalent level of performance as ANNs on large-scale datasets. However, unevenness error, which refers to the deviation caused by different temporal sequences of spike arrival on activation layers, has not been effectively resolved and seriously suffers the performance of SNNs under the condition of short time-steps. In this paper, we make a detailed analysis of unevenness error and divide it into four categories. We point out that the case of the ANN output being zero while the SNN output being larger than zero accounts for the largest percentage. Based on this, we theoretically prove the sufficient and necessary conditions of this case and propose an optimization strategy based on residual membrane potential to reduce unevenness error. The experimental results show that the proposed method achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet datasets. For example, we reach top-1 accuracy of 64.32% on ImageNet with 10-steps. To the best of our knowledge, this is the first time ANN-SNN conversion can simultaneously achieve high accuracy and ultra-low-latency on the complex dataset. Code is available at https://github.com/hzc1208/ANN2SNN_SRP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.