Abstract

Dilute acid pretreatment is a leading pretreatment technology for biomass to ethanol conversion due to the comparatively low chemical cost and effective hemicellulose solubilization. The conventional dilute acid pretreatment processes use relatively large quantities of sulfuric acid and require alkali for pH adjustment afterwards. Significant amounts of sulfate salts are generated as by-products, which have to be properly treated before disposal. Wastewater treatment is an expensive, yet indispensable part of commercial level biomass-to-ethanol plants. Therefore, reducing acid use to the lowest level possible would be of great interest to the emerging biomass-to-ethanol industry. In this study, a dilute acid pretreatment process was developed for the pretreatment of corn stover. The pretreatment was conducted at lower acid levels than the conventional process reported in the literature while using longer residence times. The study indicates that a 50% reduction in acid consumption can be achieved without compromising pretreatment efficiency when the pretreatment time was extended from 1-5min to 15-20min. To avoid undesirable sugar degradation and inhibitor generation, temperatures should be controlled below 170°C. When the sulfuric acid-to-lignocellulosic biomass ratio was kept at 0.025g acid/g dry biomass, a cellulose-to-glucose conversion of 72.7% can be achieved at an enzyme loading of 0.016g/g corn stover. It was also found that acid loading based on total solids (g acid/g dry biomass) governs the pretreatment efficiency rather than the acid concentration (g acid/g pretreatment liquid). While the acid loading on lignocellulosic biomass may be achieved through various combinations of solids loading and acid concentration in the pretreatment step, this work shows that it is unlikely to reduce acid use without undermining pretreatment efficiency simply by increasing the solid content in pretreatment reactors, therefore acid loading on biomass is indicated to be the key factor in effective dilute acid pretreatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.