Abstract

Let $\hatX$ be a smooth connected subvariety of complex projective space $\pn n$. The question was raised in \cite{CHS} of how to characterize $\hatX$ if it admits a reducible hyperplane section $\hatL$. In the case in which $\hatL$ is the union of $r \geq 2$ smooth normal crossing divisors, each of sectional genus zero, classification theorems were given for $\dim \hatX \geq 5$ or $\dim X=4$ and $r=2$. This paper restricts attention to the case of two divisors on a threefold, whose sum is ample, and which meet transversely in a smooth curve of genus at least $2$. A finiteness theorem and some general results are proven, when the two divisors are in a restricted class including $\pn 1$-bundles over curves of genus less than two and surfaces with nef and big anticanonical bundle. Next, we give results on the case of a projective threefold $\hatX$ with hyperplane section $\hatL$ that is the union of two transverse divisors, each of which is either $\pn 2$, a Hirzebruch surface $\eff_r$, or $\widetilde{\eff_2}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.