Abstract

Let G be a linear Lie group. We define the G-reducibility of a continuous or discrete cocycle modulo N. We show that a G-valued continuous or discrete cocycle which is GL(n,ℂ)-reducible is in fact G-reducible modulo two if G=GL(n,ℝ),SL(n,ℝ),Sp(n,ℝ) or O(n) and modulo one if G=U(n) .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.