Abstract

The substitutional range and cell parameter evolution of fast oxide-ion conductors La2−xRxMo2−yWyO9 (R = Nd, Gd) are investigated. In the whole series, the cubic β-La2Mo2O9 structural type is stabilized at room temperature. The effects on reducibility of both single and double substitutions are presented. Lanthanum substitution by rare earth appeared to be responsible for an increase in the reducibility and a strong but reversible amorphization under dilute hydrogen. On the contrary, the favourable role of tungsten on the compound stability under reducing conditions is evidenced: it depletes oxygen loss while making the La2Mo2O9 structural type less affected by it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.