Abstract

Working under large cardinal assumptions such as supercompactness, we study the Borel reducibility between equivalence relations modulo restrictions of the nonstationary ideal on some fixed cardinal κ. We show the consistency of Eλ-clubλ++,λ++, the relation of equivalence modulo the nonstationary ideal restricted to Sλλ++ in the space (λ++)λ++, being continuously reducible to Eλ+-club2,λ++, the relation of equivalence modulo the nonstationary ideal restricted to Sλ+λ++ in the space 2λ++. Then we show that for κ ineffable Ereg2,κ, the relation of equivalence modulo the nonstationary ideal restricted to regular cardinals in the space 2κ is Σ11-complete. We finish by showing that, for Π21-indescribable κ, the isomorphism relation between dense linear orders of cardinality κ is Σ11-complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.