Abstract

It is proved that if \(\phi \) is a finite Blaschke product with four zeros, then \(M_\phi \) is reducible on the Dirichlet space with norm \(\Vert \ \Vert \) if and only if \(\phi =\phi _1\circ \phi _2\), where \(\phi _1, \phi _2\) are Blaschke products and \(\phi _2\) is equivalent to \(z^2\). Also, the same reducibility of \(M_\phi \) with finite Blaschke product \(\phi \) on the Dirichlet space under the equivalent norms \(\Vert \ \Vert _1\) and \(\Vert \ \Vert _0\) is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.