Abstract

Abstract In radio astronomy, the science output of a telescope is often limited by computational resources. This is especially true for transient and technosignature surveys that need to search high-resolution data across a large parameter space. The tremendous data volumes produced by modern radio array telescopes exacerbate these processing challenges. Here, we introduce a ‘reduced-resolution’ beamforming approach to alleviate downstream processing requirements. Our approach, based on post-correlation beamforming, allows sensitivity to be traded against the number of beams needed to cover a given survey area. Using the MeerKAT and Murchison Widefield Array telescopes as examples, we show that survey speed can be vastly increased, and downstream signal processing requirements vastly decreased, if a moderate sacrifice to sensitivity is allowed. We show the reduced-resolution beamforming technique is intimately related to standard techniques used in synthesis imaging. We suggest that reduced-resolution beamforming should be considered to ease data processing challenges in current and planned searches; further, reduced-resolution beamforming may provide a path to computationally-expensive search strategies previously considered infeasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call