Abstract

Reduced-reference (RR) image quality measures aim to predict the visual quality of distorted images with only partial information about the reference images. In this paper, we propose an RR quality assessment method based on a natural image statistic model in the wavelet transform domain. In particular, we observe that the marginal distribution of wavelet coefficients changes in different ways for different types of image distortions. To quantify such changes, we estimate the Kullback-Leibler distance between the marginal distributions of wavelet coefficients of the reference and distorted images. A generalized Gaussian model is employed to summarize the marginal distribution of wavelet coefficients of the reference image, so that only a relatively small number of RR features are needed for the evaluation of image quality. The proposed method is easy to implement and computationally efficient. In addition, we find that many well-known types of image distortion lead to significant changes in wavelet coefficient histograms, and thus are readily detectable by our measure. The algorithm is tested with subjective ratings of a large image database that contains images corrupted with a wide variety of distortion types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call