Abstract

This paper presents a data-driven framework for the development of reduced-order models to predict microstructure-sensitive effective thermal conductivity of woven ceramic matrix composites (CMCs) with residual porosity. The main components of the proposed framework include (i) digital generation of representative volume elements (RVEs), (ii) estimation of the effective thermal conductivities of the RVEs using finite element (FE) models, (iii) low dimensional representation of the microstructure in the RVEs using 2-point spatial correlations and principal component analysis (PCA), and (iv) an active learning strategy based on Gaussian process regression (GPR) that minimizes the size of the training dataset through the selection of microstructures with the highest potential for information gain. The reduced-order models are demonstrated to provide high fidelity predictions on new RVEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.