Abstract
Ranking already among the dominant causes of imaging errors in photolithography, deformation of reticles due to inevitable heating is becoming progressively more crucial in extreme ultraviolet (EUV) lithography as the source power continually increases, leading to higher levels of absorption of the EUV light by reticles. In order to mitigate its impact on exposed layers, accurate predictions to be the inputs of a control scheme are essential. To serve this purpose, a large-scale thermo-mechanical model in partially linear state-space form is derived by using the finite element method (FEM). The temperature-dependent coefficient of thermal expansion of materials produces the only nonlinearity in the model that is present in the static output equations. Since only low-order models are feasible for real-time use, this model is undergone several model reduction techniques to arrive at the best compact model with respect to its prediction performance, compaction rate, and easiness of computation. Treating the simulation outputs from a FEM software as the benchmark, the proper orthogonal decomposition approach combined with the discrete empirical interpolation method is selected as the most suitable route for the studied application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.