Abstract

The ring-learning with errors (R-LWR) problem is utilized to build many ciphers resisting quantum-computing attacks and fully homomorphic encryption that allows computations to be carried out on encrypted data. Modular multiplication of long polynomials with large coefficients is the most critical operation in these schemes. The polynomial multiplication complexity can be reduced by the Karatsuba formula. In this paper, a new method is proposed to integrate the modular reduction into the Karatsuba polynomial multiplication. Modular reduction is applied to intermediate segment products instead of the final product. As a result, additional sub-structure sharing is enabled and the number of coefficient additions needed for assembling the segment products to get the final result is substantially reduced. For polynomial multiplications with decomposition factors 2, 3, and 4, the proposed scheme reduces the number of additions by 13-17%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.