Abstract

The expression of Wnt inhibitory factor-1 (WIF-1) gene, which was detected by a microarray analysis of hyperpigmented and normally pigmented skin sets of melasma patients, was significantly reduced in the hyperpigmented skin from melasma patients, but not in healthy controls, regardless of UV irradiation. Wnt signals regulate skin pigmentation; however, WIF-1 is expressed in cultured skin keratinocytes and fibroblasts, but not in melanocytes. Therefore, we examined whether WIF-1 knockdown in neighboring keratinocytes and fibroblasts plays a role in melasma. Additionally, the effect of WIF-1 overexpression on the amelioration of hyperpigmentation was examined. WIF-1 knockdown, either in fibroblasts or in keratinocytes, significantly stimulated tyrosinase expression and melanosome transfer, whereas melanocytes with WIF-1 overexpression significantly reduced those parameters. The WIF-1 knockdown decreased glycogen synthase kinase-3β (GSK-3β), β-catenin, and NFATc2 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2) phosphorylation and increased microphthalmia-associated transcription factor (MITF) expression as in melanocytes with Wnt-1 overexpression, whereas the WIF-1 overexpression reversed the results. Expression of Wnts, both canonical and noncanonical, was increased in the hyperpigmented skin of melasma patients. Collectively, WIF-1 downregulation, which may occur in epidermal keratinocytes and in dermal fibroblasts, is involved in melasma development because of the stimulation of melanogenesis and melanosome transfer through upregulation of the canonical and the noncanonical Wnt signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call