Abstract
The expression of Wnt inhibitory factor-1 (WIF-1) gene, which was detected by a microarray analysis of hyperpigmented and normally pigmented skin sets of melasma patients, was significantly reduced in the hyperpigmented skin from melasma patients, but not in healthy controls, regardless of UV irradiation. Wnt signals regulate skin pigmentation; however, WIF-1 is expressed in cultured skin keratinocytes and fibroblasts, but not in melanocytes. Therefore, we examined whether WIF-1 knockdown in neighboring keratinocytes and fibroblasts plays a role in melasma. Additionally, the effect of WIF-1 overexpression on the amelioration of hyperpigmentation was examined. WIF-1 knockdown, either in fibroblasts or in keratinocytes, significantly stimulated tyrosinase expression and melanosome transfer, whereas melanocytes with WIF-1 overexpression significantly reduced those parameters. The WIF-1 knockdown decreased glycogen synthase kinase-3β (GSK-3β), β-catenin, and NFATc2 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2) phosphorylation and increased microphthalmia-associated transcription factor (MITF) expression as in melanocytes with Wnt-1 overexpression, whereas the WIF-1 overexpression reversed the results. Expression of Wnts, both canonical and noncanonical, was increased in the hyperpigmented skin of melasma patients. Collectively, WIF-1 downregulation, which may occur in epidermal keratinocytes and in dermal fibroblasts, is involved in melasma development because of the stimulation of melanogenesis and melanosome transfer through upregulation of the canonical and the noncanonical Wnt signaling pathway.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.