Abstract

Growing evidence suggests that visual information is processed differently in the near-hand space, relative to the space far from the hands. To account for the existing literature, we recently proposed that the costs and benefits of hand proximity may be due to differential contributions of the action-oriented magnocellular (M) and the perception-oriented parvocellular (P) pathways. Evidence suggests that, relative to the space far from the hands, in near-hand space the contribution of the M pathway increases while the contribution of the P pathway decreases. The present study tested an important consequence of this account for visual representation. Given the P pathway's role in feeding regions in which visual representations of unified objects (with bound features) are formed, we predicted that hand proximity would reduce feature binding. Consistent with this prediction, two experiments revealed signs of reduced feature binding in the near-hand space, relative to the far-hand space. We propose that the higher contribution of the M pathway, along with the reduced contribution of the P pathway, shifts visual perception away from an object-based perceptual mode toward a feature-based mode. These results are discussed in light of the distinction between action-oriented and perception-oriented vision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call