Abstract

Metallothionein (MT) is known to play a predominant role in the protection of cells from cadmium (Cd) toxicity. To investigate other factors involved in Cd resistance, we established Cd-resistant cell lines from simian virus 40-transformed MT null fibroblasts. Cd-resistant MT null cells, Cd-rA7 and Cd-rB5, developed approximately 10-fold resistance to Cd compared to parental cells, but showed no cross-resistance to Zn, Cu, Hg, Ni, As, cisplatin or H 2O 2. Accumulation of Cd in the resistant cells was 13–18% of that of parental cells after treatment with Cd for 24 h. A short-term experiment revealed that the rate of Cd incorporation into the Cd-resistant cells was suppressed, and the rate of Cd release was enhanced in the resistant cells compared with that of parental cells. These results indicate that the altered transport of Cd, slow uptake and rapid release, may confer resistance to Cd on the Cd-resistant cells established from MT null fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.