Abstract
Onset of cell proliferation is associated with enhanced turnover of the polyamines putrescine, spermidine, and spermine, particularly evident in the massive increase in the activity of the rate-limiting enzyme in their production, ornithine decarboxylase (ODC). The physiological functions of these polyamines, however, have remained unclear. Here we report that treatment of LSTRA cells for 2–18 h with α-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, decreased the amount of phosphotyrosine in several cellular substrates including the T cell protein tyrosine kinase p56 lck . No reductions in the amount of p56 lck , overall synthesis of protein and DNA, or cell viability were observed until much later. DFMO did not affect the catalytic activity of p56 lck , in vitro and the activity of p56 lck immunoprecipitated from DFMO-treated cells was unaltered. Addition of putrescine, the reaction product of ODC, completely reversed the effect of DFMO on tyrosine phosphorylation. Finally, we provide evidence that polyamines reduce the activity of cellular protein tyrosine phosphatases toward endogenous substrates. Our results suggest that polyamines may influence the extent of tyrosine phosphorylation during cell proliferation and malignant transformation, perhaps by modulating the rate of dephosphorylation of specific target proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.