Abstract
Intestinal mucosa barrier injury and immunity imbalance contribute to chronic kidney disease (CKD) progression. Type 3 innate lymphoid cells (ILC3s) are essential for normal intestinal homeostasis. Nevertheless, the relationship between ILC3s and CKD remains largely unknown. The aim of this study was to investigate the relationship linking ILC3s to clinical indicators among patients with renal dysfunction. The levels of circulating ILC3s and dendritic cells, as well as their subsets, in patients with renal dysfunction and healthy controls were determined through flow cytometry. The levels of human plasma granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured using enzyme-linked immunosorbent assay. Renal function was evaluated by measuring the estimated glomerular filtration rate (eGFR), as well as the levels of serum creatinine, blood urea nitrogen (BUN), and uric acid. The results revealed that the proportion of peripheral ILC3s was significantly decreased in patients with renal dysfunction. This reduction was positively associated with the levels of eGFR, and inversely associated with the levels of BUN and uric acid. Similarly, the percentage of circulating C-C motif chemokine receptor 6-positive (CCR6 +) ILC3s was also obviously reduced, and demonstrated positive and negative associations with the levels of eGFR and BUN, respectively. Furthermore, the levels of CCR6 + ILC3s correlated positively with those of GM-CSF, as well as type 1 conventional dendritic cells (cDC1s), which also decreased in parallel with kidney function. Thus, the reduction of ILC3s, particularly CCR6 + ILC3s, was related to worsening kidney function in patients with renal dysfunction. This effect may delay renal function impairment by regulating cDC1s via the secretion of GM-CSF, indicating that CCR6 + ILC3s may serve as efficient biomarkers for evaluating kidney function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.