Abstract
We consider reduced crossed products of twisted C*-dynamical systems over C*-simple groups. We prove there is a bijective correspondence between maximal ideals of the reduced crossed product and maximal invariant ideals of the underlying C*-algebra, and a bijective correspondence between tracial states on the reduced crossed product and invariant tracial states on the underlying C*-algebra. In particular, the reduced crossed product is simple if and only if the underlying C*-algebra has no proper non-trivial invariant ideals, and the reduced crossed product has a unique tracial state if and only if the underlying C*-algebra has a unique invariant tracial state. We also show that the reduced crossed product satisfies an averaging property analogous to Powers' averaging property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.