Abstract

Crop improvement for drought tolerance is critical for the future of crop production. The objectives were to examine the relationship between trigonelline (TRG) accumulation and yield traits in 10 peanut (Arachis hypogaea L.) genotypes inoculated with two commonly used nitrogen-fixing Rhizobium spp., and to evaluate a role of TRG on growth traits. TRG increased as a defensive metabolite in response to water deficit, but resulted in the reduction of the number of nodules and yield. Symbiotic rhizobial activity helped plants to improve yield particularly in a fully irrigated field rather than under reduced irrigation. TRG concentrations in genotypes (7 out of 10) increased under reduced irrigation as compared with those under full irrigation in two years. Mean number of nodules at maturity (120 days after planting) across genotypes under reduced irrigation were 89 in the control, 111 in Lift, and 161 in Histick treatments, among which Histick was significant (p < 0.05) for nodulation. Mean pod yields in the control, Histick, and Lift treatments were 1.69, 2.34 and 1.87 Mg ha-1, respectively, under reduced irrigation. Under full irrigation, pod yields were 3.35 in the control, 4.50 in Histick and 3.41 Mg ha-1 in Lift treatments, but were more significantly improved as treated with Histick than other treatments. Genotype ICGS-76 produced the highest pod yield (5.13 Mg ha-1) as treated with Histick. All genotypes treated with Histick and Lift biosynthesized less TRG (decreased from 5.8 to 65.3% relative to the control) but produced larger numbers of pods (increased from 9.2 to 80.4% relative to the control), which resulted in substantially higher pod yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call