Abstract

Pulse Doppler radars measure both the targets distance to the transceiver and their radial velocity, through estimation of time delays and Doppler frequencies, respectively. This digital processing is traditionally performed on samples of the received signal at its Nyquist rate, which can be prohibitively high. Overcoming the rate bottleneck, sub-Nyquist sampling methods have been proposed that break the link between radar signal bandwidth and sampling rate. In this work, we extend this concept to the slow time domain. We choose to transmit non-uniformly spaced pulses in one direction, thus allowing to reduce the average time-on-target by exploiting the complementary set of transmitted pulses in another direction. Both software and hardware simulations demonstrate reduced time-on-target and recovery of several delay-Doppler maps within the same coherent processing interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.