Abstract

Control of flystrike on sheep relies on the use of insecticides. The present study used in vitro assays to examine the potential for increasing the efficacy of synthetic pyrethroids against sheep blowfly larvae using the synergist piperonyl butoxide (PBO). We examined the potency of alpha-cypermethrin (ACP) / PBO combinations against a reference insecticide-susceptible strain (LS) and a field-derived strain showing resistance to dicyclanil and imidacloprid. Co-treatment of the insecticide-susceptible strain with ACP/PBO resulted in increasing levels of synergism as the PBO concentration was increased, with synergism ratios (SRs) of up to 114-fold. Treatment with PBO/ACP combinations at ratios of 20:1 and 5:1 resulted in significant levels of synergism: SRs of 13.5- and 7.6-fold, respectively. However, the levels of synergism were significantly less for the insecticide-resistant strain: SRs of 4.6- and 2.6-fold for the 20:1 and 5:1 ratios, respectively. The resistant strain showed no resistance to ACP when administered alone, however, was 2-fold less sensitive than the LS strain to the toxic effects of PBO alone. This insensitivity to PBO was removed by co-treatment with the P450 inhibitor aminobenzotriazole, suggesting an increased level of P450-mediated metabolism of the PBO in this strain compared to the LS strain, and hence providing a likely explanation for the reduced synergistic efficacy of PBO on ACP toxicity in the resistant strain. While PBO was able to synergise ACP with both of the blowfly strains examined here, the reduced synergistic efficacy observed with the field-derived insecticide-resistant strain lessens the potential usefulness of such a combination for blowfly control in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call