Abstract
In this study, an off-board multi-terminal dc charger with active input current shaping for level-3 electric vehicle (EV) charging applications is proposed. The configuration is based on reduced switching state multi-point clamped, three phase improved power factor converter and supplied by the standard ac grid. The topology has the advantage of reduced device count along with reduced maximum device stress. This will increase the speed of EV charging and enables the reduction of capital and maintenance costs of the charging facilities, enhancing further expansion of the eco-friendly transport. In addition, one of the key performance indicator, i.e. the fault ride-through capability, is investigated in the proposed topology under various unbalanced input conditions. Further, steady-state and transient performance of topology during load, as well as, dc-link voltage change is presented. Minimum distorted and balanced line currents are drawn from supply by implementing negative sequence elimination control algorithm. The validation of the proposed topology is verified with simulation and a down-scaled experimental setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.