Abstract

Altered expression of the tetraspanin CD151 is associated with skin tumorigenesis; however, whether CD151 is causally involved in the tumorigenic process is not known. To evaluate its role in tumor formation, we subjected epidermis-specific Cd151 knockout mice to chemical skin carcinogenesis. Mice lacking epidermal Cd151 developed fewer and smaller tumors than wild-type mice following DMBA/TPA treatment. Furthermore, Cd151-null epidermis showed a reduced hyperproliferative response to short-term treatment with TPA compared to that of wild-type skin, while epidermal turnover was increased. Tumors were formed in equal numbers following DMBA only treatment. We suggest that DMBA-initiated keratinocytes lacking Cd151 leave their niches in the epidermis and hair follicles in response to TPA treatment and subsequently are lost by differentiation. Because genetic ablation of Itga3 also reduced skin tumor formation, we tested whether reduced expression of α3 could further suppress tumor formation in epidermis-specific Cd151 knockout mice. Although the response to DMBA/TPA-induced formation of skin tumors was similar in compound heterozygotes for Cd151 and Itga3 to that in wild-type mice, heterozygosity for Itga3 on a Cd151-null background diminished tumorigenesis suggesting genetic interaction between the two genes. We thus identify CD151 as a critical factor in TPA-dependent skin carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.