Abstract

Although the biocidal effect of calcium peroxide (CaO2) has attracted increasing attention in wastewater and sludge management, its potential in the reduction of sulfide and methane from sewer is not tapped. This study aims to fill this gap through the long-term operated sewer reactors. Results showed one-time dose of 0.2% (w/v) CaO2 with 12-h exposure decreased the average sulfide and methane production by 80% during one week. The electron paramagnetic resonance and free radical quenching tests indicated free radicals from CaO2 decomposing posed a major contribution on sewer biofilms (•OH>•O2−>alkali). Mechanistic analysis revealed extracellular polymeric matrix breakdown (e.g., protein secondary structure) and cell membrane damage were caused by the increased lipid peroxidation of cells and exacerbated intracellular reactive oxygen species under CaO2 stress. Moreover, the intracellular metabolic pathways, such as electrons provision and transfer, as well as pivotal enzymatic activities (e.g., APS reductase, sulfite reductase and coenzymes F420) were significantly impaired. RT-qPCR analysis unveiled the absolute abundances of dsrA and mcrA were decreased by 7.53–40.37% and 67.00–74.85%, respectively. Although this study broadens the application scope of CaO2 and provides in-depth understanding of advanced oxidation-based technology in sewer management, the pipe scale risk due to the release of calcium ions warrants further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call