Abstract

Long term observations by Brook et al. reveal that the derivative of rotational frequency of PSR J0738-4042 changed abruptly in 2005. Originally, the spin-down rate was relatively stable, with the rotational frequency derivative being −1.14×10−14 s−2. After September 2005, the derivative began to rise. About 1000 days later, it arrived at another relatively stable value of about −0.98 × 10−14 s−2, indicating that the pulsar is spinning-down relatively slowly. To explain the observed change in spin-down rate, we resort to an asteroid disrupted by PSR J0738-4042. In our model, the orbital angular momentum of the asteroid is assumed to be parallel to that of the rotating pulsar, so that the pronounced reduction in the spin-down rate can be naturally explained as due to the transfer of angular momentum from the disrupted material to the central pulsar. The derived magnetospheric radius is about 7.0 × 109 cm, which is smaller than the tidal disruption radius (8.7 × 1010 cm). Our model is self-consistent. It is shown that the variability in the spin-down rate of PSR J0738-4042 can be quantitatively accounted for by accretion from the asteroid disrupted by the central pulsar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.