Abstract

BackgroundHaploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD.MethodsTo study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD.ResultsThe present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD.ConclusionsThese findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.

Highlights

  • Haploinsufficiency in the Gaucher disease Glucocerebrosidase or acid βglucosidase (GBA) gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD)

  • GBA and Non-lysosomal β-glucosidase 2 (GBA2) activities progressively decline in the substantia nigra with normal ageing and are further decreased in PD To investigate if activities of the β-glucosidases GBA and GBA2 are altered in ageing or PD, GBA and GBA2 activities were assayed in substantia nigra (SN) from healthy control subjects and PD patients

  • Using sensitive and quantitative NP-High-performance liquid chromatography (HPLC) analysis, we found a significant increase in GlcCer levels in the substantia nigra of two independent cohorts of PD patients compared to age-matched controls, as well as a significant correlation between age and GlcCer levels in substantia nigra of PD patients

Read more

Summary

Introduction

Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. It is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Gaucher disease (GD) is one of the most common autosomal LSDs and is caused by mutations in GBA, which encodes the lysosomal glucocerebrosidase GBA. GBA activity has been shown to decline progressively with ageing in the SN and putamen of healthy controls, eventually becoming comparable to GBA activity found in PD patients [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call