Abstract

We present reduced-complexity nonlinear filtering algorithms for image-based tracking of maneuvering targets. In image-based target tracking, the mode of the target is observed as a Markov modulated Poisson process (MMPP) and the aim is to compute optimal estimates of the target's state. We present a reduced complexity algorithm in two steps. First, a gauge transformation is used to reexpress the filtering equations in a form that is computationally more efficient for time discretization than naive discretization of the filtering equations. Second, a spatial aggregation algorithm with guaranteed performance bounds is presented for the time-discretized filters. A numerical example illustrating the performance of the resulting reduced-complexity filtering algorithms for a switching turn-rate model is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.