Abstract

On Arctic coasts, erosion is limited by the presence of nearshore sea ice, which creates a protective barrier from storms. In Kivalina, an Alaskan Inupiaq Inuit community, decreasing seasonal sea ice extent and a lengthening of the open-water season may be resulting in fall storms that (1) generate higher, longer, and more destructive waves and (2) cause damage later in the year, resulting in increased flooding and erosion. We assess trends in the duration of nearshore sea ice and their relationship with storm occurrence over the period 1979–2015 in Kivalina. Analysis of passive microwave sea ice concentration data indicates that the open-water season has increased by 5.6 ± 1.2 days/decade over the last 37 years, with moderate evidence that it is extending further into the fall than into the spring. This is correlated with an increased reporting frequency of high-damage storms; 80% of reported storms since 1970 occurred in the last 15 years. Each high-damage storm event occurred during the open-water season for that year. Our findings support Kivalina villagers’ assertions that climate change increases storm exposure and associated damages from flooding and erosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.