Abstract
Background: Emerging evidence suggests distinct abnormal activity patterns during resting state in intrinsic functional brain networks in patients with neurodegenerative diseases, including Alzheimer's disease (AD) and mild cognitive impairment (MCI). This study aimed to identify the changes in the resting-state intracortical lagged phase synchronization derived from dense array electroencephalography (EEG) in AD and MCI. Methods: Resting-state current source density (CSD) and lagged phase synchronization between 84 regions of interest defined by Brodmann areas (BAs) for seven EEG frequency bands were investigated between the study groups (AD, MCI, and age-matched controls) using 128-channel EEG. Results: Reduced CSD and connectivity (large effect size, Cohen's d > 0.8) were found in AD and MCI compared with controls at alpha frequency. However, a positive correlation (r = 0.433; p = 0.044) of mini-mental state examination scores was found with BA 32-33 connectivity values in AD only. Conclusion: Reduced resting-state alpha 1 source connectivity in patient groups and correlation between attenuation of resting-state alpha 1 connectivity with cognitive decline in AD could indicate the disruption of inhibitory function of alpha rhythm leading to tonic unselective cortical excitation that affects attention and controlled access to stored information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.