Abstract

To determine whether altered noradrenergic activation of the hypothalamo-pituitary-adrenal (HPA) axis contributes to the attenuated neuroendocrine response to stress observed during lactation, the effect of intracerebroventricular injection of the alpha1-agonist methoxamine (100 microg) was compared between virgin and lactating rats. Virgin rats showed significant increases in plasma corticosterone after methoxamine, reaching 317 +/- 44 ng/ml at 10 min and remaining significantly elevated for more than 120 min, but lactating rats showed no significant increase in corticosterone levels. Furthermore, methoxamine induced an increase in paraventricular nucleus (PVN) CRF messenger RNA expression in virgin, but not lactating, animals. Both groups of rats exhibited comparable elevations in plasma PRL after methoxamine treatment. Arginine vasopressin messenger RNA expression within the parvocellular PVN was greater in the lactating animals than in the virgin controls, but methoxamine injection was without further effect. Studies performed on ovariectomized virgin rats and ovariectomized rats receiving estradiol or progesterone replacement failed to reproduce the attenuated HPA responses seen after methoxamine treatment, although methoxamine-induced PRL levels were greatly increased by estradiol, probably arising from an effect on hormone synthesis. In vitro electrophysiological recordings of PVN neurons in hypothalamic slices from proestrous virgin and lactating rats showed that 45-52% of neurons in both groups exhibited excitatory responses to 10(-4) M methoxamine, but there was a differential response to 10(-5) M methoxamine, with PVN neurons from lactating animals failing to show a response. These data show a selective down-regulation of alpha1-mediated activation of the HPA axis in lactating animals. This may contribute to the attenuated stress-induced activation of the HPA axis during lactation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.