Abstract

Dopamine, via activation of renal D(1) receptors, inhibits the activities of Na-K-ATPase and Na/H exchanger and subsequently increases sodium excretion. Decreased renal dopamine production and sodium excretion are associated with type I diabetes. However, it is not known whether the response to D(1) receptor activation is altered in type I diabetes. The present study was designed to examine the effect of streptozotocin-induced type I diabetes on renal D(1) receptor expression and function. Streptozotocin treatment of Sprague-Dawley rats caused a fourfold increase in plasma levels of glucose along with a significant decrease in insulin levels compared with control rats. Intravenous administration of SKF-38393, a D(1) receptor agonist, caused a threefold increase in sodium excretion in control rats. However, SKF-38393 failed to produce natriuresis in diabetic rats. SKF-38393 caused a concentration-dependent inhibition of Na-K-ATPase activity in renal proximal tubules of control rats. However, the ability of SKF-38393 to inhibit Na-K-ATPase activity was markedly diminished in diabetic rats. D(1) receptor numbers and protein abundance as determined by [(3)H]SCH-23390 ligand binding and Western blot analysis were markedly reduced in diabetic rats compared with control rats. Moreover, SKF-38393 failed to stimulate GTP gamma S binding in proximal tubular membranes from diabetic rats compared with control rats. We conclude that the natriuretic response to D(1) receptor activation is reduced in type I diabetes as a result of a decrease in D(1) receptor expression and defective receptor G protein coupling. These abnormalities may contribute to the sodium retention associated with type I diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.