Abstract

Ridge regression is a classical statistical technique that attempts to address the bias-variance trade-off in the design of linear regression models. A reformulation of ridge regression in dual variables permits a non-linear form of ridge regression via the well-known ‘kernel trick’. Unfortunately, unlike support vector regression models, the resulting kernel expansion is typically fully dense. In this paper, we introduce a reduced rank kernel ridge regression (RRKRR) algorithm, capable of generating an optimally sparse kernel expansion that is functionally identical to that resulting from conventional kernel ridge regression (KRR). The proposed method is demonstrated to out-perform an alternative sparse kernel ridge regression algorithm on the Motorcycle and Boston Housing benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.