Abstract

The design of high-efficiency low-complexity detection schemes for ultrawide bandwidth (UWB) systems is highly challenging. This paper proposes a reduced-rank adaptive multiuser detection (MUD) scheme that is operated in least bit-error-rate (LBER) principles for hybrid direct-sequence time-hopping UWB (DS-TH UWB) systems. The principal component analysis (PCA)-assisted rank-reduction technique is employed to obtain a detection subspace, where the reduced-rank adaptive LBER-MUD is carried out. The reduced-rank adaptive LBER-MUD is free from channel estimation and does not require knowledge about the number of resolvable multipaths and the multipaths' strength. In this paper, the BER performance of the hybrid DS-TH UWB systems using the proposed detection scheme is investigated, assuming communications over UWB channels modeled by the Saleh-Valenzuela channel model. Our studies and performance results show that, given a reasonable rank of the detection subspace, the reduced-rank adaptive LBER-MUD can efficiently mitigate both multiuser and intersymbol interference (ISI) and achieve the diversity gain promised by the UWB systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.