Abstract

Methanogenic archaea carry homologs of dissimilatory sulfite reductase (Dsr), called Dsr Like proteins (DsrLP). Dsr reduces sulfite to sulfide, a key step in an Earth’s ancient metabolic process called dissimilatory sulfate reduction. The DsrLPs do not function as Dsr, and a computational approach is needed to develop hypotheses for guiding wet bench investigations on DsrLP’s function. To make the computational analysis process efficient, the DsrLP amino acid sequences were transformed using only eight alphabets functionally representing twenty amino acids. The resultant reduced amino acid sequences were analyzed to identify conserved signature patterns in DsrLPs. Many of these patterns mapped on critical structural elements of Dsr and some were associated tightly with particular DsrLP groups. A search into the UniProtKB database identified several proteins carrying DsrLP’s signature patterns; cysteine desulfurase, nucleosidase, and uroporphyrinogen III methylase were such matches. These outcomes provided clues to the functions of DsrLPs and highlighted the utility of the computational approach used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.