Abstract
A qualitative platelet abnormality and a bleeding tendency are frequently associated with renal failure and uremia. We demonstrated previously that uremic patients display an abnormal platelet aggregation to arachidonic acid and reduced malondialdehyde production in response to thrombin and arachidonic acid. The objectives of this investigation were: (a) to compare platelet prostaglandin (PG) and thromboxane (TX) production in whole blood and in platelet-rich plasma (PRP) of 21 uremic patients and 22 healthy subjects; (b) to evaluate the concentration and activity of platelet PG- and TX-forming enzymes; (c) to assess the functional responsiveness of the platelet TXA(2)/PGH(2) receptor; (d) to explore the hemostatic consequences of partially reduced TXA(2) production.Platelet immunoreactive TXB(2) production during whole blood clotting was significantly reduced, by approximately 60%, in uremic patients as compared to age- and sex-matched controls. Exogenous thrombin (5-30 IU/ml) failed to restore normal TXB(2) production in uremic platelets. Uremic PRP produced comparable or slightly higher amounts of TXB(2) than normal PRP at arachidonate concentrations 0.25-1 mM. However, when exposed to substrate concentrations >2 mM, uremic PRP produced significantly less TXB(2) than normal PRP. To discriminate between reduced arachidonic acid oxygenation and altered endoperoxide metabolism, the time course of immunoreactive TXB(2) and PGE(2) production was measured during whole blood clotting. The synthesis and release of both cyclooxygenase-derived products was slower and significantly reduced, at all time intervals considered. Furthermore, PGI(2) production in whole blood, as reflected by serum immunoreactive 6-keto-PGF(1alpha) concentrations, was significantly reduced in uremic patients as compared with healthy subjects. PGH synthase levels, as determined by an immunoradiometric assay, were not significantly different in platelets from uremic patients as compared to control platelets. A single 40-mg dose of aspirin given to five healthy volunteers reduced their serum TXB(2) to levels found in uremic patients. This was associated with a significant increase of threshold aggregating concentrations of ADP and arachidonic acid and prolongation of bleeding time. Substantially similar threshold concentrations of U46619, a TXA(2) agonist, induced aggregation of normal and uremic platelets. Prostacyclin induced a significant elevation of uremic platelet cyclic AMP, which was suppressed by U46619, further suggesting normal responsiveness of the TXA(2)/PGH(2) receptor. WE CONCLUDE THAT: (a) an abnormality of platelet arachidonic acid metabolism exists in uremia, leading to a reduced TXA(2) production; (b) the characteristics of this abnormality are consistent with a functional cyclooxygenase defect; (c) reduced TXA(2) production may partially explain the previously described abnormality of platelet function in uremia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.