Abstract

Phosphodiesterase-2 (PDE2) is a cyclic nucleotide phosphodiesterase and is highly expressed in the amygdala, which suggests its important role in anxiety-like behavior. The present study examined whether reduced PDE2A expression in the central nucleus of the amygdala (CeA) produces anxiolytic-like effects in mice. PDE2A knockdown in amygdaloid (AR5) cells or the CeA was established using a lentiviral vector-based siRNA system. The anxiety-like behaviors were detected by the elevated plus maze (EPM) and hole-board tests in mice. The related proteins involved in cAMP/cGMP-dependent signaling, such as specific marker VASPser239, CREBser133 and BDNF were detected by immunoblot analysis. PDE2A inhibition in AR-5 cells resulted in increases in cAMP/cGMP-related pVASPser239 and pCREBser133. Behavioral tests showed that PDE2A knockdown in the CeA induced anxiolytic-like effects as evidenced by the increases in percentages of open-arm entries and time spent in the open arms in the EPM test, and the increases in head dips and time spent in head dipping in the hole-board test. However, these anxiolytic-like effects were antagonized by pre-treatment of soluble guanylyl cyclase inhibitor ODQ or adenylate cyclase inhibitor SQ. Furthermore, PDE2A knockdown significantly increased pVASPSer239, pCREBSer133 and decreased BDNF expression in the amygdala. Pre-intra-CeA of ODQ or SQ reversed or partially prevented the effects of PDE2A knockdown on these proteins. The results suggest that PDE2A plays a crucial role in the regulation of anxiety by the cGMP/cAMP-dependent pVASP-pCREB-BDNF signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.