Abstract

We study the settling of finite-size rigid spheres in sustained homogeneous isotropic turbulence (HIT) by direct numerical simulations using an immersed boundary method to account for the dispersed solid phase. We study semi-dilute suspensions at different Galileo numbers, $Ga$. The Galileo number is the ratio between buoyancy and viscous forces, and is here varied via the solid-to-fluid density ratio $\unicode[STIX]{x1D70C}_{p}/\unicode[STIX]{x1D70C}_{f}$. The focus is on particles that are slightly heavier than the fluid. We find that in HIT, the mean settling speed is less than that in quiescent fluid; in particular, it reduces by 6 %–60 % with respect to the terminal velocity of an isolated sphere in quiescent fluid as the ratio between the latter and the turbulent velocity fluctuations $u^{\prime }$ is decreased. Analysing the fluid–particle relative motion, we find that the mean settling speed is progressively reduced while reducing $\unicode[STIX]{x1D70C}_{p}/\unicode[STIX]{x1D70C}_{f}$ due to the increase of the vertical drag induced by the particle cross-flow velocity. Unsteady effects contribute to the mean overall drag by about 6 %–10 %. The probability density functions of particle velocities and accelerations reveal that these are closely related to the features of the turbulent flow. The particle mean-square displacement in the settling direction is found to be similar for all $Ga$ if time is scaled by $(2a)/u^{\prime }$ (where $2a$ is the particle diameter and $u^{\prime }$ is the turbulence velocity root mean square).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call