Abstract

Several studies support the hypothesis that oxidation of low-density lipoprotein (LDL) promotes atherogenesis. Obesity is one of the risk factors of atherosclerosis, but it is not known whether obesity is related to LDL oxidation. We investigated the effect of weight reduction and subsequent weight maintenance program on LDL oxidation in 77 obese premenopausal women (BMI 29-46 kg/m(2)). Another group of seven obese women served as a control group. Oxidized LDL was measured as baseline concentration of conjugated dienes in LDL lipids (ox-LDL). The weight reduction was performed in 12 weeks, using a very-low-energy diet. The mean weight loss was 13 kg (92 vs 79 kg). During weight reduction, the concentration of LDL cholesterol decreased by 11%, the concentration of ox-LDL decreased by 40%, and the ratio of ox-LDL to LDL by 33%. The concentration of LDL antioxidant capacity (LDL-TRAP) decreased by 8%, but the decrease was caused by the decrease in LDL. The concentration of LDL, ox-LDL or LDL-TRAP did not change in the control group. The weight reduction correlated with the decrease of ox-LDL. During the subsequent 9 month weight maintenance programme, the concentrations of serum LDL (10%), ox-LDL (11%), LDL-TRAP (29%), and the ratio of LDL-TRAP to LDL (21%) decreased. This study strengthens the evidence that the risk of atherogenesis is influenced favourably by weight reduction in obese women. This risk reduction is associated with a reduced oxidation of LDL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.