Abstract

Magnetic gears (MGs) emerged as an interesting alternative to conventional mechanical gears, owing mainly to their high torque densities and contactless operation. This paper presents a novel observer-based position control system for a magnetic-geared servo drive. The presented control system is based on two well established control strategies—field-oriented control (FOC) and state feedback control. The former is used to achieve effective torque control of a permanent magnet synchronous motor (PMSM) which is considered as an actuator that drives the high-speed rotor, whereas the latter is used to control the position of the low-speed rotor. A reduced-order extended state observer is used to estimate the position and speed of the low-speed rotor, thereby reducing the number of sensors required for the implementation of the controller. The whole control system is implemented on a microcontroller and tested on an existing prototype with a gear ratio of 18:1. The experimental results show that the presented control system guarantees precise positioning within a short amount of time and excellent disturbance rejection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call