Abstract

In this article, the output-feedback tracking control problem is considered for a class of nonlinear time-delay systems in a strict-feedback form. Based on a state observer with reduced order, a novel output-feedback control scheme is proposed using the backstepping approach, which is able to guarantee the system transient and steady-state performance within a prescribed region. Different from existing works on prescribed performance control (PPC), the present method can relax the restriction that the initial value must be given within a predefined region, say, PPC semiglobally. In the case that the upper bound functions for nonlinear time-delay functions are unknown, based on the approximate capacity of fuzzy-logic systems, an adaptive fuzzy approximation control strategy is proposed. When the upper bound functions are known in prior, or in a product form with unknown parameters and known functions, an output-feedback tracking controller is designed, under which the closed-loop signals are globally ultimately uniformly bounded, and tracking control with global prescribed performance can be achieved. Simulation results are given to substantiate our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call