Abstract
In this article, a dynamic event-triggered control scheme for a class of stochastic nonlinear systems with unknown input saturation and partially unmeasured states is presented. First, a dynamic event-triggered mechanism (DEM) is designed to reduce some unnecessary transmissions from controller to actuator so as to achieve better resource efficiency. Unlike most existing event-triggered mechanisms, in which the threshold parameters are always fixed, the threshold parameter in the developed event-triggered condition is dynamically adjusted according to a dynamic rule. Second, an improved neural network that considers the reconstructed error is introduced to approximate the unknown nonlinear terms existed in the considered systems. Third, an auxiliary system with the same order as the considered system is constructed to deal with the influence of asymmetric input saturation, which is distinct from most existing methods for nonlinear systems with input saturation. Assuming that the partial state is unavailable in the system, a reduced-order observer is presented to estimate them. Furthermore, it is theoretically proven that the obtained control scheme can achieve the desired objects. Finally, a one-link manipulator system and a three-degree-of-freedom ship maneuvering system are presented to illustrate the effectiveness of the proposed control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.